West China Journal of Stomatology ›› 2021, Vol. 39 ›› Issue (5): 493-500.doi: 10.7518/hxkq.2021.05.001
Received:
2020-11-24
Revised:
2021-07-17
Online:
2021-10-01
Published:
2021-10-11
Contact:
Feng Xiaodong.
E-mail:xiaodongfeng@scu.edu.cn
Supported by:
CLC Number:
Feng Xiaodong.. Targeting-YAP/TAZ therapies for head and neck cancer, directly or indirectly?[J]. West China Journal of Stomatology, 2021, 39(5): 493-500.
Add to citation manager EndNote|Ris|BibTeX
Tab 1
The inhibitors targeting YAP/TAZ-TEAD
名称 | 靶点 | 活性 | 模型 | 文献/专利 |
---|---|---|---|---|
维替泊芬 | YAP-TEAD相互作用(机制并不完全清楚) | TEAD转录活性降低 | 葡萄膜黑色素瘤(体内、体外);视网膜母细胞瘤 | [ |
CA3 | 抑制方式和与YAP相互作用的机制仍然未知 | 调节YAP/TEAD转录活性并降低YAP表达 | 食管腺癌(体内、体外) | [ |
芴-肟化合物类似物 | 机制并不完全清楚 | 降低YAP报告基因的活性 | 无 | [ |
基于双芳基肼支架化合物 | YAP/TAZ-TEAD相互作用(机制并不完全清楚) | TEAD-GAL4激活试验中中度活性;高浓度下对间皮瘤细胞系的抗增殖活性 | 间皮瘤细胞系(体外) | [ |
小分子抑制剂 WO2017/053706 | TEAD核心的脂质囊 | 抑制靶基因表达和细胞增殖 | 肝细胞系 | [ |
氟灭酸 | TEAD核心的脂质囊 | TEAD报告基因活性和一些Hippo通路反应基因活性下降 | 乳腺癌细胞系 | [ |
氟灭酸衍生物/TED-347 | YAP/TAZ-TEAD相互作用 | YAP-TEAD相互作用,转录活性降低 | 胶质母细胞瘤细胞系 | [ |
环状YAP样肽 | 内源性YAP竞争 | TEAD-YAP结合被抑制,YAP-TEAD转录活性 | 无 | [ |
super-TDU | 与YAP直接竞争TEAD的结合,抑制YAP的活性 | TEAD-YAP结合被抑制 | 胃癌、结直肠癌、肺癌(体内、体外) | [ |
CPD3.1 | 破坏YAP-TEAD蛋白质-蛋白质相互作用 | 抑制TEAD活性 | HeLa体外 | [ |
Peptide 17/yap样多肽(17mer) | 破坏YAP-TEAD蛋白质-蛋白质相互作用 | YAP-TEAD转录活性降低 | 肝癌(体内外)、骨肉瘤(体外) | [ |
雷公藤红素 | 直接与YAP/TAZ TEAD相互作用并破坏其作用 | YAP/TEAD转录活性降低 | 肺癌、乳腺癌(体外) | [ |
1 | Sudol M. Yes-associated protein (YAP65) is a proline-rich phosphoprotein that binds to the SH3 domain of the Yes proto-oncogene product[J]. Oncogene, 1994, 9(8): 2145-2152. |
2 | Yu FX, Zhao B, Guan KL. Hippo pathway in organ size control, tissue homeostasis, and cancer[J]. Cell, 2015, 163(4): 811-828. |
3 | Justice RW, Zilian O, Woods DF, et al. The Drosophila tumor suppressor gene warts encodes a homolog of human myotonic dystrophy kinase and is required for the control of cell shape and proliferation[J]. Genes Dev, 1995, 9(5): 534-546. |
4 | Xu T, Wang W, Zhang S, et al. Identifying tumor suppressors in genetic mosaics: the Drosophila lats gene encodes a putative protein kinase[J]. Development, 1995, 121(4): 1053-1063. |
5 | Tapon N, Harvey KF, Bell DW, et al. Salvador promotes both cell cycle exit and apoptosis in Drosophila and is mutated in human cancer cell lines[J]. Cell, 2002, 110(4): 467-478. |
6 | Kango-Singh M, Nolo R, Tao C, et al. Shar-pei mediates cell proliferation arrest during imaginal disc growth in Drosophila[J]. Development, 2002, 129(24): 5719-5730. |
7 | Wu S, Huang J, Dong J, et al. Hippo encodes a Ste-20 family protein kinase that restricts cell proliferation and promotes apoptosis in conjunction with salvador and warts[J]. Cell, 2003, 114(4): 445-456. |
8 | Udan RS, Kango-Singh M, Nolo R, et al. Hippo promotes proliferation arrest and apoptosis in the Salvador/Warts pathway[J]. Nat Cell Biol, 2003, 5(10): 914-920. |
9 | Harvey KF, Pfleger CM, Hariharan IK. The Drosophila Mst ortholog, hippo, restricts growth and cell proliferation and promotes apoptosis[J]. Cell, 2003, 114(4): 457-467. |
10 | Jia J, Zhang W, Wang B, et al. The Drosophila Ste20 family kinase dMST functions as a tumor suppressor by restricting cell proliferation and promoting apoptosis[J]. Genes Dev, 2003, 17(20): 2514-2519. |
11 | Pantalacci S, Tapon N, Léopold P. The Salvador partner Hippo promotes apoptosis and cell-cycle exit in Droso-phila[J]. Nat Cell Biol, 2003, 5(10): 921-927. |
12 | Lai ZC, Wei X, Shimizu T, et al. Control of cell prolife-ration and apoptosis by mob as tumor suppressor, mats[J]. Cell, 2005, 120(5): 675-685. |
13 | Pan D. The hippo signaling pathway in development and cancer[J]. Dev Cell, 2010, 19(4): 491-505. |
14 | Aragona M, Panciera T, Manfrin A, et al. A mechanical checkpoint controls multicellular growth through YAP/TAZ regulation by actin-processing factors[J]. Cell, 2013, 154(5): 1047-1059. |
15 | Dupont S, Morsut L, Aragona M, et al. Role of YAP/TAZ in mechanotransduction[J]. Nature, 2011, 474(7350): 179-183. |
16 | Feng X, Degese MS, Iglesias-Bartolome R, et al. Hippo-independent activation of YAP by the GNAQ uveal melanoma oncogene through a trio-regulated rho GTPase signaling circuitry[J]. Cancer Cell, 2014, 25(6): 831-845. |
17 | Overholtzer M, Zhang J, Smolen GA, et al. Transforming properties of YAP, a candidate oncogene on the chromosome 11q22 amplicon[J]. Proc Natl Acad Sci U S A, 2006, 103(33): 12405-12410. |
18 | Sanchez-Vega F, Mina M, Armenia J, et al. Oncogenic signaling pathways in the cancer genome atlas[J]. Cell, 2018, 173(2): 321-337.e10. |
19 | Zanconato F, Cordenonsi M, Piccolo S. YAP/TAZ at the roots of cancer[J]. Cancer Cell, 2016, 29(6): 783-803. |
20 | Martin D, Degese MS, Vitale-Cross L, et al. Assembly and activation of the Hippo signalome by FAT1 tumor suppressor[J]. Nat Commun, 2018, 9(1): 2372. |
21 | Jiang Y, Li T, Wu Y, et al. GPR39 Overexpression in OSCC promotes YAP-sustained malignant progression[J]. J Dent Res, 2020, 99(8): 949-958. |
22 | Schlegelmilch K, Mohseni M, Kirak O, et al. Yap1 acts downstream of α-catenin to control epidermal proliferation[J]. Cell, 2011, 144(5): 782-795. |
23 | Omori H, Nishio M, Masuda M, et al. YAP1 is a potent driver of the onset and progression of oral squamous cell carcinoma[J]. Sci Adv, 2020, 6(12): eaay3324. |
24 | Pan Z, Tian Y, Zhang B, et al. YAP signaling in gastric cancer-derived mesenchymal stem cells is critical for its promoting role in cancer progression[J]. Int J Oncol, 2017, 51(4): 1055-1066. |
25 | Zhang Y, Shen H, Withers HG, et al. VGLL4 selectively represses YAP-dependent gene induction and tumorige-nic phenotypes in breast cancer[J]. Sci Rep, 2017, 7(1): 6190. |
26 | Moroishi T, Hansen CG, Guan KL. The emerging roles of YAP and TAZ in cancer[J]. Nat Rev Cancer, 2015, 15(2): 73-79. |
27 | Yuan Y, Park J, Feng A, et al. YAP1/TAZ-TEAD transcriptional networks maintain skin homeostasis by regulating cell proliferation and limiting KLF4 activity[J]. Nat Commun, 2020, 11(1): 1472. |
28 | Arnold JJ, Blinder KJ, Bressler NM, et al. Acute severe visual acuity decrease after photodynamic therapy with verteporfin: case reports from randomized clinical trials-TAP and VIP report no. 3[J]. Am J Ophthalmol, 2004, 137(4): 683-696. |
29 | Azab M, Benchaboune M, Blinder KJ, et al. Verteporfin therapy of subfoveal choroidal neovascularization in age-related macular degeneration: meta-analysis of 2-year sa-fety results in three randomized clinical trials: treatment of age-related macular degeneration with photodynamic therapy and verteporfin in photodynamic therapy study report no. 4[J]. Retina, 2004, 24(1): 1-12. |
30 | Zhang Z, Lin Z, Zhou Z, et al. Structure-based design and synthesis of potent cyclic peptides inhibiting the YAP-TEAD protein-protein interaction[J]. ACS Med Chem Lett, 2014, 5(9): 993-998. |
31 | Jiao S, Wang H, Shi Z, et al. A peptide mimicking VG-LL4 function acts as a YAP antagonist therapy against gastric cancer[J]. Cancer Cell, 2014, 25(2): 166-180. |
32 | Jiao S, Li C, Hao Q, et al. VGLL4 targets a TCF4-TEAD4 complex to coregulate Wnt and Hippo signalling in colo-rectal cancer[J]. Nat Commun, 2017, 8: 14058. |
33 | Liu-Chittenden Y, Huang B, Shim JS, et al. Genetic and pharmacological disruption of the TEAD-YAP complex suppresses the oncogenic activity of YAP[J]. Genes Dev, 2012, 26(12): 1300-1305. |
34 | Gibault F, Corvaisier M, Bailly F, et al. Non-photoinduced biological properties of verteporfin[J]. Curr Med Chem, 2016, 23(11): 1171-1184. |
35 | Brodowska K, Al-Moujahed A, Marmalidou A, et al. The clinically used photosensitizer Verteporfin (VP) inhibits YAP-TEAD and human retinoblastoma cell grow-th in vitro without light activation[J]. Exp Eye Res, 2014, 124: 67-73. |
36 | Song S, Xie M, Scott AW, et al. A novel YAP1 inhibitor targets CSC-enriched radiation-resistant cells and exerts strong antitumor activity in esophageal adenocarcinoma[J]. Mol Cancer Ther, 2018, 17(2): 443-454. |
37 | Konradi AW, Lin TTT. New substituted diphenyl-amine compounds are yes-associated protein/transcriptional co-activator with PDZ-binding motif-transcriptional enhan-cer associate domain interaction inhibitors used to treat cancer e.g. solid tumor and sarcoma: WO2018204532-A1[P]. 2018-11-08. |
38 | Coburn C, Konradi AW, Lin TTT, et al. New substituted tricyclic compounds are transcriptional co-activator PDZ binding motif/Yes-associated protein inhibitors to treat cancer of e.g. bladder and liver and congenital disease including Port-Wine Stain and/or Sturge-Weber Syndro-me: WO2017058716-A1[P]. 2017-04-06. |
39 | Barth M, Contal S, Soude A, et al. New benzo(d)isothiazole1,1-dioxide derivatives are yes-associated protein/transcriptional co-activator with PDZ binding motif-transcriptional enhancer factors interaction inhibitors used to treat cancer i.e. malignant mesothelioma: WO20181852-66(A1)[P]. 2018-10-11. |
40 | Barth M, Contal S, Montalbetti C, et al. New substituted4-((1,1-dioxo-1H-1-lambda(6)-benzo(d)isothiazol-3-yl)-hydrazonomethyl)-2-methoxy-phenols are yes associated protein/tafazzin-TEA domain transcription factor interaction inhibitors, used to treat e.g. malignant mesothelioma: WO2017064277-A1[P]. 2017-04-20. |
41 | Chan P, Han X, Zheng B, et al. Autopalmitoylation of TEAD proteins regulates transcriptional output of the Hippo pathway[J]. Nat Chem Biol, 2016, 12(4): 282-289. |
42 | Pobbati AV, Han X, Hung AW, et al. Targeting the central pocket in human transcription factor TEAD as a potential cancer therapeutic strategy[J]. Structure, 2015, 23(11): 2076-2086. |
43 | Bum-Erdene K, Zhou D, Gonzalez-Gutierrez G, et al. Small-molecule covalent modification of conserved cysteine leads to allosteric inhibition of the TEAD⋅Yap protein-protein interaction[J]. Cell Chem Biol, 2019, 26(3): 378-389.e13. |
44 | Smith SA, Sessions RB, Shoemark DK, et al. Antiproliferative and antimigratory effects of a novel YAP-TEAD interaction inhibitor identified using in silico molecular docking[J]. J Med Chem, 2019, 62(3): 1291-1305. |
45 | Zhou Z, Hu T, Xu Z, et al. Targeting Hippo pathway by specific interruption of YAP-TEAD interaction using cyclic YAP-like peptides[J]. FASEB J, 2015, 29(2): 724-732. |
46 | Nouri K, Azad T, Ling M, et al. Identification of celastrol as a novel YAP-TEAD inhibitor for cancer therapy by high throughput screening with ultrasensitive YAP/TAZ-TEAD biosensors[J]. Cancers (Basel), 2019, 11(10): 1596. |
47 | Calses PC, Crawford JJ, Lill JR, et al. Hippo pathway in cancer: aberrant regulation and therapeutic opportunities[J]. Trends Cancer, 2019, 5(5): 297-307. |
48 | García-Escudero R, Segrelles C, Dueñas M, et al. Overexpression of PIK3CA in head and neck squamous cell carcinoma is associated with poor outcome and activation of the YAP pathway[J]. Oral Oncol, 2018, 79: 55-63. |
49 | Fan R, Kim NG, Gumbiner BM. Regulation of Hippo pathway by mitogenic growth factors via phosphoinositide 3-kinase and phosphoinositide-dependent kinase-1[J]. Proc Natl Acad Sci U S A, 2013, 110(7): 2569-2574. |
50 | Dorsam RT, Gutkind JS. G-protein-coupled receptors and cancer[J]. Nat Rev Cancer, 2007, 7(2): 79-94. |
51 | Yu FX, Zhao B, Panupinthu N, et al. Regulation of the Hippo-YAP pathway by G-protein-coupled receptor signaling[J]. Cell, 2012, 150(4): 780-791. |
52 | O'Hayre M, Vázquez-Prado J, Kufareva I, et al. The e-merging mutational landscape of G proteins and G-protein-coupled receptors in cancer[J]. Nat Rev Cancer, 2013, 13(6): 412-424. |
53 | Wu V, Yeerna H, Nohata N, et al. Illuminating the Onco-GPCRome: novel G protein-coupled receptor-driven oncocrine networks and targets for cancer immunotherapy[J]. J Biol Chem, 2019, 294(29): 11062-11086. |
54 | Feng X, Arang N, Rigiracciolo DC, et al. A platform of synthetic lethal gene interaction networks reveals that the GNAQ uveal melanoma oncogene controls the hippo pathway through FAK[J]. Cancer Cell, 2019, 35(3): 457-472.e5. |
55 | Sulzmaier FJ, Jean C, Schlaepfer DD. FAK in cancer: mechanistic findings and clinical applications[J]. Nat Rev Cancer, 2014, 14(9): 598-610. |
56 | Tanjoni I, Walsh C, Uryu S, et al. PND-1186 FAK inhibitor selectively promotes tumor cell apoptosis in three-dimensional environments[J]. Cancer Biol Ther, 2010, 9(10): 764-777. |
57 | Infante JR, Camidge DR, Mileshkin LR, et al. Safety, pharmacokinetic, and pharmacodynamic phase Ⅰ dose-escalation trial of PF-00562271, an inhibitor of focal adhesion kinase, in advanced solid tumors[J]. J Clin Oncol, 2012, 30(13): 1527-1533. |
58 | Shi Q, Hjelmeland AB, Keir ST, et al. A novel low-molecular weight inhibitor of focal adhesion kinase, TAE-226, inhibits glioma growth[J]. Mol Carcinog, 2007, 46(6): 488-496. |
59 | Cancer Genome Atlas Network. Comprehensive genomic characterization of head and neck squamous cell carcinomas[J]. Nature, 2015, 517(7536): 576-582. |
60 | Stransky N, Egloff AM, Tward AD, et al. The mutational landscape of head and neck squamous cell carcinoma[J]. Science, 2011, 333(6046): 1157-1160. |
61 | Bader AG, Kang S, Zhao L, et al. Oncogenic PI3K deregulates transcription and translation[J]. Nat Rev Cancer, 2005, 5(12): 921-929. |
62 | Harari PM, Wheeler DL, Grandis JR. Molecular target approaches in head and neck cancer: epidermal growth factor receptor and beyond[J]. Semin Radiat Oncol, 2009, 19(1): 63-68. |
[1] | Wan Xiaofang, He Haiyan, Jialing Lü, Wu Yujie, Zhong Guannan, Xu Xiaomei. Hippo-YAP signaling pathway regulates autophagy of human periodontal ligament cells under cyclic tensile stress [J]. West China Journal of Stomatology, 2023, 41(3): 260-268. |
[2] | Meng Yuchen, Huang Fan, Wang Silin, Huang Xin, Lu Yi, Pei Dandan. Bonding properties of mild universal adhesives to dentin pretreated with hydroxyapatite-based desensitizing agents [J]. West China Journal of Stomatology, 2022, 40(6): 668-675. |
[3] | Zhang Zhiyuan, Sun Shuyang. Expanding the concept of patient-derived xenografts cohorts in head and neck cancer: current and future perspectives [J]. West China Journal of Stomatology, 2021, 39(6): 617-623. |
[4] | Tang Hao, Zhu Yawen, Zhu Jiaxiang, Li Quanli. Occluding dentin tubules with monetite paste in vitro [J]. West China Journal of Stomatology, 2021, 39(6): 667-674. |
[5] | Guo Wei. Clinical comment of programmed cell death protein 1 immunotherapy for advanced head and neck cancer [J]. West China Journal of Stomatology, 2020, 38(5): 489-494. |
[6] | Liling Wu,Qingping Gao,Qiongyao Fu,Kun. Geng. Analysis of the risk factors of radiation-induced caries in patients with head and neck cancer [J]. West China Journal of Stomatology, 2019, 37(1): 87-91. |
[7] | Ting Wei,Xinwei Zhang,Huiqiang Sun,Mengyun Mao. Selective laser sintering and performances of porous titanium implants [J]. West China Journal of Stomatology, 2018, 36(5): 532-538. |
[8] | Xiaolei Gao, Xinhua Liang, Yaling Tang. Mechanisms and implications of cancer cell dormancy in head and neck carcinoma [J]. West China Journal of Stomatology, 2018, 36(1): 92-98. |
[9] | Yan Liu, Mingxin Cao, Jiashun Wu, Xiaolei Gao, Xinhua Liang. Analysis of the current status of research on human papillomavirus-associated head and neck cancers based on recent Chinese literature [J]. West China Journal of Stomatology, 2017, 35(3): 301-310. |
[10] | Kun Tian, Xiaoyun Feng, Qin Du, Chuhang Liao, Xiaohua. Ren. Study of human leucine-rich amelogenin peptide and its regulation of mineralization by cryogenic transmission electron microscopy [J]. West China Journal of Stomatology, 2017, 35(1): 63-67. |
[11] | Wang Fei, Zhang Huiyu, Dou Yuxin, Li Shiting, Zhang Gang, Tan Yinghui. Calcitonin gene-related peptide-induced osteogenic differentiation of mouse bone marrow stromal cells through Hippo pathway in vitro [J]. West China Journal of Stomatology, 2016, 34(3): 286-290. |
[12] | Xu Ke, Zhao Yanhong, Li Hongfa. Fabrication and evaluation of hydroxyapatite-chitosan scaffold via simulated body fluid biomimetic mineralization [J]. West China Journal of Stomatology, 2016, 34(1): 6-11. |
[13] | Xi Weihong, Wang Zhen, Zhu Hongshui, Li Xiaofeng, Xiong Yuanfei. Synthesis and characteristics of integrated bionic mandibular condylar scaffold [J]. West China Journal of Stomatology, 2016, 34(1): 68-72. |
[14] | Tang Cuizhu, Wen Yong, Gu Weiting, Zhang Bing, Zhang Yunpeng, Ji Yawen, Xu Xin,. Effects of YAP-small interfering RNA on the proliferation and apoptosis of human periodontal ligament stem cells [J]. West China Journal of Stomatology, 2015, 33(6): 622-626. |
[15] | Qin Zishun, Yin Lihua, Wang Kaijuan, Liu Qi, Cheng Wenxiao, Gao Peng, Sun Kemo, Zhong Mei, Yu Zhanhai. Effects of Icariin promotion on proliferation and osteogenic differentiation of human periodontal ligament stem cells [J]. West China Journal of Stomatology, 2015, 33(4): 370-376. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||