1 |
孟焕新. 牙周病学[M]. 5版. 北京: 人民卫生出版社, 2020: 321-323.
|
|
Meng HX. Periodontology[M]. 5th ed. Beijing: People’s Medical Publishing House, 2020: 321-323.
|
2 |
GBD 2017 Disease and Injury Incidence and Prevalence Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017[J]. Lancet, 2018, 392(10159): 1789-1858.
|
3 |
Sanz M, Beighton D, Curtis MA, et al. Role of microbial biofilms in the maintenance of oral health and in the development of dental caries and periodontal diseases. Consensus report of group 1 of the Joint EFP/ORCA workshop on the boundaries between caries and perio-dontal disease[J]. J Clin Periodontol, 2017, 44(): S5-S11.
|
4 |
Tomasi C, Leyland AH, Wennström JL. Factors influen-cing the outcome of non-surgical periodontal treatment: a multilevel approach[J]. J Clin Periodontol, 2007, 34(8): 682-690.
|
5 |
Heitz-Mayfield LJ, Lang NP. Surgical and nonsurgical periodontal therapy. Learned and unlearned concepts[J]. Periodontol 2000, 2013, 62(1): 218-231.
|
6 |
Ahmadi H, Ebrahimi A, Ahmadi F. Antibiotic therapy in dentistry[J]. Int J Dent, 2021, 2021: 6667624.
|
7 |
蒋宸, 韩琪, 杨靖梅. 姜黄素防治牙周炎的研究进展[J]. 中华口腔医学杂志, 2020, 55(9): 685-690.
|
|
Jiang C, Han Q, Yang JM. Research progress of curcumin in the prevention and treatment of periodontitis[J]. Chin J Stomatol, 2020, 55(9): 685-690.
|
8 |
Rahalkar A, Kumathalli K, Kumar R. Determination of efficacy of curcumin and Tulsi extracts as local drugs in periodontal pocket reduction: a clinical and microbiolo-gical study[J]. J Indian Soc Periodontol, 2021, 25(3): 197-202.
|
9 |
Pérez-Pacheco CG, Fernandes NAR, Primo FL, et al. Local application of curcumin-loaded nanoparticles as an adjunct to scaling and root planing in periodontitis: randomized, placebo-controlled, double-blind split-mou-th clinical trial[J]. Clin Oral Investig, 2021, 25(5): 3217-3227.
|
10 |
Guru SR, Reddy KA, Rao RJ, et al. Comparative evaluation of 2% turmeric extract with nanocarrier and 1% chlorhexidine gel as an adjunct to scaling and root pla-ning in patients with chronic periodontitis: a pilot randomized controlled clinical trial[J]. J Indian Soc Perio-dontol, 2020, 24(3): 244-252.
|
11 |
Zhang Y, Huang L, Zhang J, et al. Anti-inflammatory efficacy of curcumin as an adjunct to non-surgical perio-dontal treatment: a systematic review and meta-analysis[J]. Front Pharmacol, 2022, 13: 808460.
|
12 |
Zhang Y, Huang L, Mazurel D, et al. Clinical efficacy of curcumin versus chlorhexidine as an adjunct to scaling and root planing for the treatment of periodontitis: a systematic review and meta-analysis[J]. Phytother Res, 2021, 35(11): 5980-5991.
|
13 |
Zheng B, McClements DJ. Formulation of more efficacious curcumin delivery systems using colloid science: enhanced solubility, stability, and bioavailability[J]. Mo-lecules, 2020, 25(12): 2791.
|
14 |
Sherman BT, Hao M, Qiu J, et al. DAVID: a web server for functional enrichment analysis and functional annotation of gene lists (2021 update)[J]. Nucleic Acids Res, 2022, 50(W1): W216-W221.
|
15 |
郝民琦, 王佳慧, 李晓玲, 等. 基于网络药理学与分子对接探讨黄芪治疗溃疡性结肠炎的作用机制[J]. 中国药房, 2021, 32(10): 1215-1223.
|
|
Hao MQ, Wang JH, Li XL, et al. Study on the mechanism of Astragali Radix in the treatment of ulcerative colitis based on network pharmacology and molecular docking[J]. Chin Pharm, 2021, 32(10): 1215-1223.
|
16 |
Bardou P, Mariette J, Escudié F, et al. jvenn: an interactive Venn diagram viewer[J]. BMC Bioinformatics, 2014, 15(1): 293.
|
17 |
Kong R, Kang OH, Seo YS, et al. MAPKs and NF‑κB pathway inhibitory effect of bisdemethoxycurcumin on phorbol‑12‑myristate‑13‑acetate and A23187‑induced inflammation in human mast cells[J]. Mol Med Rep, 2018, 17(1): 630-635.
|
18 |
Reuter S, Charlet J, Juncker T, et al. Effect of curcumin on nuclear factor kappaB signaling pathways in human chronic myelogenous K562 leukemia cells[J]. Ann N Y Acad Sci, 2009, 1171: 436-447.
|
19 |
Li Y, Jiao J, Qi Y, et al. Curcumin: a review of experimental studies and mechanisms related to periodontitis treatment[J]. J Periodontal Res, 2021, 56(5): 837-847.
|
20 |
Afacan B, Öztürk VÖ, Paşalı Ç, et al. Gingival crevicular fluid and salivary HIF-1α, VEGF, and TNF-α levels in periodontal health and disease[J]. J Periodontol, 2019, 90(7): 788-797.
|
21 |
Ng KT, Li JP, Ng KM, et al. Expression of hypoxia-inducible factor-1α in human periodontal tissue[J]. J Periodontol, 2011, 82(1): 136-141.
|
22 |
Vasconcelos RC, Costa Ade L, Freitas Rde A, et al. Immunoexpression of HIF-1α and VEGF in periodontal disease and healthy gingival tissues[J]. Braz Dent J, 2016, 27(2): 117-122.
|
23 |
Shi QY, Huang SG, Zeng JH, et al. Expression of hypoxia inducible factor-1α and vascular endothelial growth factor-C in human chronic periodontitis[J]. J Dent Sci, 2015, 10(3): 323-333.
|
24 |
Ahn JK, Koh EM, Cha HS, et al. Role of hypoxia-inducible factor-1alpha in hypoxia-induced expressions of IL-8, MMP-1 and MMP-3 in rheumatoid fibroblast-like synoviocytes[J]. Rheumatology (Oxford), 2008, 47(6): 834-839.
|
25 |
Shimada T, Kakitani M, Yamazaki Y, et al. Targeted ablation of Fgf23 demonstrates an essential physiological role of FGF23 in phosphate and vitamin D metabolism[J]. J Clin Invest, 2004, 113(4): 561-568.
|
26 |
Barros SP, Silva MA, Somerman MJ, et al. Parathyroid hormone protects against periodontitis-associated bone loss[J]. J Dent Res, 2003, 82(10): 791-795.
|
27 |
Vasconcelos DF, Marques MR, Benatti BB, et al. Intermittent parathyroid hormone administration improves periodontal healing in rats[J]. J Periodontol, 2014, 85(5): 721-728.
|
28 |
Tokunaga K, Seto H, Ohba H, et al. Topical and intermittent application of parathyroid hormone recovers alveolar bone loss in rat experimental periodontitis[J]. J Periodontal Res, 2011, 46(6): 655-662.
|
29 |
Bashutski JD, Eber RM, Kinney JS, et al. Teriparatide and osseous regeneration in the oral cavity[J]. N Engl J Med, 2010, 363(25): 2396-2405.
|
30 |
Zhang Z, Yang X, Zhang H, et al. The role of extracellular matrix metalloproteinase inducer glycosylation in re-gulating matrix metalloproteinases in periodontitis[J]. J Periodontal Res, 2018, 53(3): 391-402.
|
31 |
Sorsa T, Ding YL, Ingman T, et al. Cellular source, activation and inhibition of dental plaque collagenase[J]. J Clin Periodontol, 1995, 22(9): 709-717.
|
32 |
Yakob M, Meurman JH, Sorsa T, et al. Treponema denticola associates with increased levels of MMP-8 and MMP-9 in gingival crevicular fluid[J]. Oral Dis, 2013, 19(7): 694-701.
|
33 |
Sorsa T, Gursoy UK, Nwhator S, et al. Analysis of matrix metalloproteinases, especially MMP-8, in gingival creviclular fluid, mouthrinse and saliva for monitoring periodontal diseases[J]. Periodontol 2000, 2016, 70(1): 142-163.
|
34 |
Leppilahti JM, Hernández-Ríos PA, Gamonal JA, et al. Matrix metalloproteinases and myeloperoxidase in gingival crevicular fluid provide site-specific diagnostic value for chronic periodontitis[J]. J Clin Periodontol, 2014, 41(4): 348-356.
|
35 |
Liu X, Zhang Z, Pan S, et al. Interaction between the Wnt/β-catenin signaling pathway and the EMMPRIN/MMP-2, 9 route in periodontitis[J]. J Periodontal Res, 2018, 53(5): 842-852.
|
36 |
Kiili M, Cox SW, Chen HY, et al. Collagenase-2 (MMP-8) and collagenase-3 (MMP-13) in adult periodontitis: molecular forms and levels in gingival crevicular fluid and immunolocalisation in gingival tissue[J]. J Clin Periodontol, 2002, 29(3): 224-232.
|
37 |
Baeza M, Garrido M, Hernández-Ríos P, et al. Diagnostic accuracy for apical and chronic periodontitis biomarkers in gingival crevicular fluid: an exploratory study[J]. J Clin Periodontol, 2016, 43(1): 34-45.
|
38 |
Checchi V, Maravic T, Bellini P, et al. The role of matrix metalloproteinases in periodontal disease[J]. Int J Environ Res Public Health, 2020, 17(14): 4923.
|
39 |
Luchian I, Goriuc A, Sandu D, et al. The role of matrix metalloproteinases (MMP-8, MMP-9, MMP-13) in pe-riodontal and peri-Implant pathological processes[J]. Int J Mol Sci, 2022, 23(3): 1806.
|
40 |
Luo KW, Chen W, Lung WY, et al. EGCG inhibited bladder cancer SW780 cell proliferation and migration both in vitro and in vivo via down-regulation of NF-κB and MMP-9[J]. J Nutr Biochem, 2017, 41: 56-64.
|
41 |
Sapna G, Gokul S, Bagri-Manjrekar K. Matrix metalloproteinases and periodontal diseases[J]. Oral Dis, 2014, 20(6): 538-550.
|
42 |
Khuda F, Anuar NNM, Baharin B, et al. A mini review on the associations of matrix metalloproteinases (MMPs)-1,-8,-13 with periodontal disease[J]. AIMS Mol Sci, 2021, 8: 13-31.
|
43 |
Pivetta E, Scapolan M, Pecolo M, et al. MMP-13 stimulates osteoclast differentiation and activation in tumour breast bone metastases[J]. Breast Cancer Res, 2011, 13(5): R105.
|
44 |
Tabeta K, Georgel P, Janssen E, et al. Toll-like receptors 9 and 3 as essential components of innate immune defense against mouse cytomegalovirus infection[J]. Proc Natl Acad Sci U S A, 2004, 101(10): 3516-3521.
|
45 |
Chen YC, Liu CM, Jeng JH, et al. Association of pocket epithelial cell proliferation in periodontitis with TLR9 expression and inflammatory response[J]. J Formos Med Assoc, 2014, 113(8): 549-556.
|
46 |
Karatas O, Balci Yuce H, Tulu F, et al. Evaluation of apoptosis and hypoxia-related factors in gingival tissues of smoker and non-smoker periodontitis patients[J]. J Pe-riodontal Res, 2020, 55(3): 392-399.
|