华西口腔医学杂志 ›› 2021, Vol. 39 ›› Issue (5): 501-509.doi: 10.7518/hxkq.2021.05.002
收稿日期:
2021-02-25
修回日期:
2021-07-08
出版日期:
2021-10-01
发布日期:
2021-10-11
通讯作者:
石玉
E-mail:yushi1105@163.com
作者简介:
石玉,研究员,博士,E-mail:基金资助:
Received:
2021-02-25
Revised:
2021-07-08
Online:
2021-10-01
Published:
2021-10-11
Contact:
Shi Yu.
E-mail:yushi1105@163.com
Supported by:
摘要:
骨稳态的维持对于骨骼健康极为重要,如果骨形成与骨吸收的平衡被打破,容易造成骨量丢失、骨质疏松等多种骨骼疾病。近期越来越多的研究表明,能量代谢失调,例如葡萄糖代谢异常、氨基酸代谢受阻以及脂代谢缺陷等等,都会对骨稳态的平衡造成破坏,从而引起或是加剧导致骨量减少和骨质疏松性骨折等疾病。本文将对能量代谢在成骨细胞以及破骨细胞中的研究进展进行总结分析,深入了解能量代谢,特别是葡萄糖代谢在骨稳态维持中对成骨、破骨细胞分化和功能的关键调控作用,为了解、治疗骨质疏松等骨相关疾病提供指导。
中图分类号:
石玉. 能量代谢在成骨和破骨细胞中的研究[J]. 华西口腔医学杂志, 2021, 39(5): 501-509.
Shi Yu.. The investigation of energy metabolism in osteoblasts and osteoclasts[J]. West China Journal of Stomatology, 2021, 39(5): 501-509.
1 | Zeng Q, Li N, Wang QQ, et al. The prevalence of osteoporosis in China, a nationwide, multicenter DXA survey[J]. J Bone Miner Res, 2019, 34(10): 1789-1797. |
2 | Davis S, Martyn-St James M, Sanderson J, et al. A systematic review and economic evaluation of bisphosphonates for the prevention of fragility fractures[J]. Health Technol Assess, 2016, 20(78): 1-406. |
3 | Lv F, Cai XL, Yang WJ, et al. Denosumab or romosozumab therapy and risk of cardiovascular events in patients with primary osteoporosis: systematic review and Meta-analysis[J]. Bone, 2020, 130: 115121. |
4 | Long FX. Building strong bones: molecular regulation of the osteoblast lineage[J]. Nat Rev Mol Cell Biol, 2011, 13(1): 27-38. |
5 | Karsenty G, Kronenberg HM, Settembre C. Genetic control of bone formation[J]. Annu Rev Cell Dev Biol, 2009, 25: 629-648. |
6 | Boyle WJ, Simonet WS, Lacey DL. Osteoclast different-iation and activation[J]. Nature, 2003, 423(6937): 337-342. |
7 | Teitelbaum SL. Bone resorption by osteoclasts[J]. Science, 2000, 289(5484): 1504-1508. |
8 | Lee WC, Guntur AR, Long FX, et al. Energy metabolism of the osteoblast: implications for osteoporosis[J]. Endocr Rev, 2017, 38(3): 255-266. |
9 | Esen E, Long FX. Aerobic glycolysis in osteoblasts[J]. Curr Osteoporos Rep, 2014, 12(4): 433-438. |
10 | Felix R, Neuman WF, Fleisch H. Aerobic glycolysis in bone: lactic acid production by rat calvaria cells in culture[J]. Am J Physiol, 1978, 234(1): C51-C55. |
11 | Neuman WF, Neuman MW, Brommage R. Aerobic glycolysis in bone: lactate production and gradients in calvaria[J]. Am J Physiol, 1978, 234(1): C41-C50. |
12 | Borle AB, Nichols N, Nichols G Jr. Metabolic studies of bone in vitro. I. Normal bone[J]. J Biol Chem, 1960, 235: 1206-1210. |
13 | Guntur AR, Le PT, Farber CR, et al. Bioenergetics during calvarial osteoblast differentiation reflect strain differences in bone mass[J]. Endocrinology, 2014, 155(5): 1589-1595. |
14 | Komarova SV, Ataullakhanov FI, Globus RK. Bioenergetics and mitochondrial transmembrane potential during differentiation of cultured osteoblasts[J]. Am J Physiol Cell Physiol, 2000, 279(4): C1220-C1229. |
15 | Klein BY, Gal I, Hartshtark Z, et al. Induction of osteoprogenitor cell differentiation in rat marrow stroma increases mitochondrial retention of rhodamine 123 in stromal cells[J]. J Cell Biochem, 1993, 53(3): 190-197. |
16 | Passi-Even L, Gazit D, Bab I. Ontogenesis of ultrastructural features during osteogenic differentiation in diffusion chamber cultures of marrow cells[J]. J Bone Miner Res, 1993, 8(5): 589-595. |
17 | Lee WC, Ji X, Nissim I, et al. Malic enzyme couples mitochondria with aerobic glycolysis in osteoblasts[J]. Cell Rep, 2020, 32(10): 108108. |
18 | Tormos KV, Anso E, Hamanaka RB, et al. Mitochondrial complex Ⅲ ROS regulate adipocyte differentiation[J]. Cell Metab, 2011, 14(4): 537-544. |
19 | Wang WM, Zhang Y, Lu WY, et al. Mitochondrial reactive oxygen species regulate adipocyte differentiation of mesenchymal stem cells in hematopoietic stress induced by arabinosylcytosine[J]. PLoS One, 2015, 10(3): e0120629. |
20 | Carey BW, Finley LW, Cross JR, et al. Intracellular α-ketoglutarate maintains the pluripotency of embryonic stem cells[J]. Nature, 2015, 518(7539): 413-416. |
21 | Wellen KE, Hatzivassiliou G, Sachdeva UM, et al. ATP-citrate lyase links cellular metabolism to histone acetylation[J]. Science, 2009, 324(5930): 1076-1080. |
22 | Karner CM, Esen E, Chen JK, et al. Wnt protein signaling reduces nuclear acetyl-CoA levels to suppress gene expression during osteoblast differentiation[J]. J Biol Chem, 2016, 291(25): 13028-13039. |
23 | Rodan GA, Rodan SB, Marks SC Jr. Parathyroid hormone stimulation of adenylate cyclase activity and lactic acid accumulation in Calvaria of osteopetrotic (ia) rats[J]. Endocrinology, 1978, 102(5): 1501-1505. |
24 | Nichols FC, Neuman WF. Lactic acid production in mouse calvaria in vitro with and without parathyroid hormone stimulation: lack of acetazolamide effects[J]. Bone, 1987, 8(2): 105-109. |
25 | Esen E, Lee SY, Wice BM, et al. PTH promotes bone anabolism by stimulating aerobic glycolysis via IGF signaling[J]. J Bone Miner Res, 2015, 30(11): 2137. |
26 | Regan JN, Lim J, Shi Y, et al. Up-regulation of glycolytic metabolism is required for HIF1α-driven bone formation[J]. Proc Natl Acad Sci U S A, 2014, 111(23): 8673-8678. |
27 | Esen E, Chen JQ, Karner CM, et al. WNT-LRP5 signaling induces Warburg effect through mTORC2 activation during osteoblast differentiation[J]. Cell Metab, 2013, 17(5): 745-755. |
28 | Tu XL, Chen JQ, Lim J, et al. Physiological notch signaling maintains bone homeostasis via RBPjk and Hey upstream of NFATc1[J]. PLoS Genet, 2012, 8(3): e1002577. |
29 | Hilton MJ, Tu XL, Wu XM, et al. Notch signaling maintains bone marrow mesenchymal progenitors by suppressing osteoblast differentiation[J]. Nat Med, 2008, 14(3): 306-314. |
30 | Lee SY, Long FX. Notch signaling suppresses glucose metabolism in mesenchymal progenitors to restrict osteoblast differentiation[J]. J Clin Invest, 2018, 128(12): 5573-5586. |
31 | Teperino R, Amann S, Bayer M, et al. Hedgehog partial agonism drives Warburg-like metabolism in muscle and brown fat[J]. Cell, 2012, 151(2): 414-426. |
32 | Shi Y, Chen JQ, Karner CM, et al. Hedgehog signaling activates a positive feedback mechanism involving insulin-like growth factors to induce osteoblast differentiation[J]. Proc Natl Acad Sci U S A, 2015, 112(15): 4678-4683. |
33 | Takeno A, Kanazawa I, Notsu M, et al. Glucose uptake inhibition decreases expressions of receptor activator of nuclear factor-kappa B ligand (RANKL) and osteocalcin in osteocytic MLO-Y4-A2 cells[J]. Am J Physiol Endocrinol Metab, 2018, 314(2): E115-E123. |
34 | Lemma S, Sboarina M, Porporato PE, et al. Energy metabolism in osteoclast formation and activity[J]. Int J Biochem Cell Biol, 2016, 79: 168-180. |
35 | Kim JM, Jeong D, Kang HK, et al. Osteoclast precursors display dynamic metabolic shifts toward accelerated glucose metabolism at an early stage of RANKL-stimulated osteoclast differentiation[J]. Cell Physiol Biochem, 2007, 20(6): 935-946. |
36 | Jin ZX, Wei W, Yang M, et al. Mitochondrial complex Ⅰ activity suppresses inflammation and enhances bone resorption by shifting macrophage-osteoclast polarization[J]. Cell Metab, 2014, 20(3): 483-498. |
37 | Miyazaki T, Iwasawa M, Nakashima T, et al. Intracellular and extracellular ATP coordinately regulate the inverse correlation between osteoclast survival and bone resorption[J]. J Biol Chem, 2012, 287(45): 37808-37823. |
38 | Li BE, Lee WC, Song C, et al. Both aerobic glycolysis and mitochondrial respiration are required for osteoclast differentiation[J]. FASEB J, 2020, 34(8): 11058-11067. |
39 | Ahn H, Lee K, Kim JM, et al. Accelerated lactate dehydrogenase activity potentiates osteoclastogenesis via NFATc1 signaling[J]. PLoS One, 2016, 11(4): e0153886. |
40 | Williams JP, Blair HC, McDonald JM, et al. Regulation of osteoclastic bone resorption by glucose[J]. Biochem Biophys Res Commun, 1997, 235(3): 646-651. |
41 | Larsen KI, Falany ML, Ponomareva LV, et al. Glucose-dependent regulation of osteoclast H(+)-ATPase expression: potential role of p38 MAP-kinase[J]. J Cell Biochem, 2002, 87(1): 75-84. |
42 | Indo Y, Takeshita S, Ishii KA, et al. Metabolic regulation of osteoclast differentiation and function[J]. J Bone Miner Res, 2013, 28(11): 2392-2399. |
43 | Walsh NP, Blannin AK, Robson PJ, et al. Glutamine, exercise and immune function. Links and possible mechanisms[J]. Sports Med, 1998, 26(3): 177-191. |
44 | Stegen S, van Gastel N, Eelen G, et al. HIF-1α promotes glutamine-mediated redox homeostasis and glycogen-dependent bioenergetics to support postimplantation bone cell survival[J]. Cell Metab, 2016, 23(2): 265-279. |
45 | Wise DR, Thompson CB. Glutamine addiction: a new therapeutic target in cancer[J]. Trends Biochem Sci, 2010, 35(8): 427-433. |
46 | Slawson C, Copeland RJ, Hart GW. O-GlcNAc signaling: a metabolic link between diabetes and cancer[J]. Trends Biochem Sci, 2010, 35(10): 547-555. |
47 | Reitzer LJ, Wice BM, Kennell D. Evidence that glutamine, not sugar, is the major energy source for cultured HeLa cells[J]. J Biol Chem, 1979, 254(8): 2669-2676. |
48 | Biltz RM, Letteri JM, Pellegrino ED, et al. Glutamine metabolism in bone[J]. Miner Electrolyte Metab, 1983, 9(3): 125-131. |
49 | Brown PM, Hutchison JD, Crockett JC. Absence of glutamine supplementation prevents differentiation of murine calvarial osteoblasts to a mineralizing phenotype[J]. Calcif Tissue Int, 2011, 89(6): 472-482. |
50 | Karner CM, Esen E, Okunade AL, et al. Increased glutamine catabolism mediates bone anabolism in response to WNT signaling[J]. J Clin Invest, 2015, 125(2): 551-562. |
51 | Yu YL, Newman H, Shen LY, et al. Glutamine metabolism regulates proliferation and lineage allocation in skeletal stem cells[J]. Cell Metab, 2019, 29(4): 966-978.e4. |
52 | Morten KJ, Badder L, Knowles HJ. Differential regulation of HIF-mediated pathways increases mitochondrial metabolism and ATP production in hypoxic osteoclasts[J]. J Pathol, 2013, 229(5): 755-764. |
53 | Lee S, Kim HS, Kim MJ, et al. Glutamine metabolite α-ketoglutarate acts as an epigenetic co-factor to interfere with osteoclast differentiation[J]. Bone, 2021, 145: 115836. |
54 | Yang XL, Matsuda K, Bialek P, et al. ATF4 is a substrate of RSK2 and an essential regulator of osteoblast biology; implication for Coffin-Lowry Syndrome[J]. Cell, 2004, 117(3): 387-398. |
55 | Elefteriou F, Benson MD, Sowa H, et al. ATF4 mediation of NF1 functions in osteoblast reveals a nutritional basis for congenital skeletal dysplasiae[J]. Cell Metab, 2006, 4(6): 441-451. |
56 | Chevalley T, Rizzoli R, Manen D, et al. Arginine increases insulin-like growth factor-Ⅰ production and collagen synthesis in osteoblast-like cells[J]. Bone, 1998, 23(2): 103-109. |
57 | Green CR, Wallace M, Divakaruni AS, et al. Branched-chain amino acid catabolism fuels adipocyte differentiation and lipogenesis[J]. Nat Chem Biol, 2016, 12(1): 15-21. |
58 | Pino AM, Miranda M, Figueroa C, et al. Qualitative aspects of bone marrow adiposity in osteoporosis[J]. Front Endocrinol (Lausanne), 2016, 7: 139. |
59 | Qian GF, Fan W, Ahlemeyer B, et al. Peroxisomes in different skeletal cell types during intramembranous and endochondral ossification and their regulation during osteoblast differentiation by distinct peroxisome proliferator-activated receptors[J]. PLoS One, 2015, 10(12): e01-43439. |
60 | Yeh LC, Ford JJ, Lee JC, et al. Palmitate attenuates osteoblast differentiation of fetal rat calvarial cells[J]. Biochem Biophys Res Commun, 2014, 450(1): 777-781. |
61 | Gunaratnam K, Vidal C, Boadle R, et al. Mechanisms of palmitate-induced cell death in human osteoblasts[J]. Biol Open, 2013, 2(12): 1382-1389. |
62 | Frey JL, Li Z, Ellis JM, et al. Wnt-Lrp5 signaling regulates fatty acid metabolism in the osteoblast[J]. Mol Cell Biol, 2015, 35(11): 1979-1991. |
63 | Lau BY, Cohen DJ, Ward WE, et al. Investigating the role of polyunsaturated fatty acids in bone development using animal models[J]. Molecules, 2013, 18(11): 14203-14227. |
64 | Kasonga AE, Kruger MC, Coetzee M. Free fatty acid receptor 4-β-arrestin 2 pathway mediates the effects of different classes of unsaturated fatty acids in osteoclasts and osteoblasts[J]. Biochim Biophys Acta Mol Cell Biol Lipids, 2019, 1864(3): 281-289. |
65 | Ozaki Y, Morozumi T, Watanabe K, et al. Inhibitory effect of omega-3 fatty acids on alveolar bone resorption and osteoclast differentiation[J]. J Oral Sci, 2020, 62(3): 298-302. |
66 | Bermeo S, Al Saedi A, Vidal C, et al. Treatment with an inhibitor of fatty acid synthase attenuates bone loss in ovariectomized mice[J]. Bone, 2019, 122: 114-122. |
67 | Fong JE, Le Nihouannen D, Tiedemann K, et al. Moderate excess of pyruvate augments osteoclastogenesis[J]. Biol Open, 2013, 2(4): 387-395. |
68 | Lecka-Czernik B, Rosen CJ. Energy excess, glucose utilization, and skeletal remodeling: new insights[J]. J Bone Miner Res, 2015, 30(8): 1356-1361. |
69 | Verhaeghe J, Visser WJ, Einhorn TA, et al. Osteoporosis and diabetes: lessons from the diabetic BB rat[J]. Horm Res, 1990, 34(5-6): 245-248. |
70 | Verhaeghe J, Suiker AM, Visser WJ, et al. The effects of systemic insulin, insulin-like growth factor-Ⅰand growth hormone on bone growth and turnover in spontaneously diabetic BB rats[J]. J Endocrinol, 1992, 134(3): 485-492. |
71 | Shires R, Teitelbaum SL, Bergfeld MA, et al. The effect of streptozotocin-induced chronic diabetes mellitus on bone and mineral homeostasis in the rat[J]. J Lab Clin Med, 1981, 97(2): 231-240. |
72 | Goodman WG, Hori MT. Diminished bone formation in experimental diabetes. Relationship to osteoid maturation and mineralization[J]. Diabetes, 1984, 33(9): 825-831. |
73 | Reni C, Mangialardi G, Meloni M, et al. Diabetes stimulates osteoclastogenesis by acidosis-induced activation of transient receptor potential cation channels[J]. Sci Rep, 2016, 6: 30639. |
74 | Zhou Z, Immel D, Xi CX, et al. Regulation of osteoclast function and bone mass by RAGE[J]. J Exp Med, 2006, 203(4): 1067-1080. |
75 | Goettsch C, Babelova A, Trummer O, et al. NADPH oxidase 4 limits bone mass by promoting osteoclastogenesis[J]. J Clin Invest, 2013, 123(11): 4731-4738. |
76 | Chen CT, Shih YR, Kuo TK, et al. Coordinated changes of mitochondrial biogenesis and antioxidant enzymes during osteogenic differentiation of human mesenchymal stem cells[J]. Stem Cells, 2008, 26(4): 960-968. |
77 | Almeida M, Han L, Martin-Millan M, et al. Oxidative stress antagonizes Wnt signaling in osteoblast precursors by diverting β-catenin from T cell factor- to forkhead box O-mediated transcription[J]. J Biol Chem, 2007, 282(37): 27298-27305. |
78 | Rosen CJ, Bone Klibanski A., fat, and compositionbody: evolving concepts in the pathogenesis of osteoporosis[J]. Am J Med, 2009, 122(5): 409-414. |
[1] | 戴振宁, 郑蔚晗, 利时雨. 核因子κB受体活化因子配体和肿瘤坏死因子α经炎性牙周膜干细胞外泌体促进破骨细胞分化[J]. 华西口腔医学杂志, 2022, 40(4): 377-385. |
[2] | 肖勉, 胡智慧, 江恒华, 房维, 龙星. 破骨细胞分化在颞下颌关节骨关节炎发生中的作用[J]. 华西口腔医学杂志, 2021, 39(4): 398-404. |
[3] | 刘伟, 李春洁, 李龙江. 口腔癌颌骨侵犯的分子机制研究进展[J]. 华西口腔医学杂志, 2021, 39(2): 221-226. |
[4] | 吴湘楠, 马媛媛, 浩志超, 王航. 溶血磷脂酸对骨组织细胞生物学调控功能的研究进展[J]. 华西口腔医学杂志, 2020, 38(3): 324-329. |
[5] | 仉红,王丽娜,左美娜,董明,史东梅,徐慧君,牛卫东. 布鲁顿酪氨酸激酶对破骨细胞增殖及分化作用的实验研究[J]. 华西口腔医学杂志, 2019, 37(4): 361-365. |
[6] | 雷群,林东,黄文秀,吴东,陈江. 钙离子对人成骨细胞迁移与成骨分化的影响[J]. 华西口腔医学杂志, 2018, 36(6): 602-608. |
[7] | 廖锋, 刘士博, 刘瑶, 刘航航, 胡建, 刘显. 重组人骨保护素抑制破骨细胞及促进羟磷灰石修复去势大鼠下颌骨缺损的研究[J]. 华西口腔医学杂志, 2018, 36(4): 367-371. |
[8] | 丁鑫鑫, 周延民, 相星辰, 孟琳, 秦勤, 叶珊. 壳聚糖复合材料在骨组织工程中的研究进展[J]. 华西口腔医学杂志, 2018, 36(4): 441-446. |
[9] | 邵华英, 张一弓, 杨雪, 张琼月, 吴小红. 抑菌浓度米诺环素对成骨细胞增殖、分化和矿化的影响[J]. 华西口腔医学杂志, 2018, 36(2): 140-145. |
[10] | 杨胜银, 陈平, 鲍济波, 丁怡心, 邹晋阳, 谢志刚. 脱矿牙本质基质骨诱导性及对相关细胞鉴定的实验研究[J]. 华西口腔医学杂志, 2018, 36(1): 33-38. |
[11] | 刘媛媛, 官秀梅, 成敏, 李鑫, 潘岳阳, 郭志良. 三磷酸腺苷敏感性钾离子通道在外源性硫化氢抑制高糖诱导的成骨细胞损伤中的作用[J]. 华西口腔医学杂志, 2017, 35(5): 473-478. |
[12] | 徐高丽, 柳毅, 吴立立, 史秋涛, 霍光, 谷志远. 柚皮苷协同骨形态发生蛋白-2促进小鼠成骨细胞MC3T3-E1增殖和分化的研究[J]. 华西口腔医学杂志, 2017, 35(3): 275-280. |
[13] | 安洋, 张慧宇, 郭俊峰, 李鑫, 杨阳, 张纲, 谭颖徽. 降钙素基因相关肽对血清饥饿作用下MC3T3-E1成骨细胞凋亡和自噬的影响[J]. 华西口腔医学杂志, 2017, 35(2): 133-138. |
[14] | 陈筑, 宿凌恺. 丹皮酚对牙龈卟啉单胞菌诱导骨髓来源巨噬细胞功能的影响[J]. 华西口腔医学杂志, 2017, 35(2): 139-144. |
[15] | 郭俊峰,张慧宇,张纲,安洋,杨阳,王飞,谭颖徽. 降钙素基因相关肽对MC3T3-E1成骨细胞氧化损伤的保护作用研究[J]. 华西口腔医学杂志, 2016, 34(6): 584-588. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||