1 |
Xu J, Zhang J, Shi Y, et al. Surface modification of biomedical Ti and Ti alloys: a review on current advances[J]. Materials (Basel), 2022, 15(5): 1749.
|
2 |
Wu X, Wang S. Biomimetic calcium carbonate concentric microgrooves with tunable widths for promoting MC3T3-E1 cell functions[J]. Adv Healthc Mater, 2013, 2(2): 326-333.
|
3 |
Zhang Q, Lin S, Zhang T, et al. Curved microstructures promote osteogenesis of mesenchymal stem cells via the RhoA/ROCK pathway[J]. Cell Prolif, 2017, 50(4): e-12356.
|
4 |
Zhou L, You J, Wang Z, et al. 3D printing monetite-coa-ted Ti-6Al-4V surface with osteoimmunomodulatory function to enhance osteogenesis[J]. Biomater Adv, 2022, 134: 112562.
|
5 |
Boyan BD, Berger MB, Nelson FR, et al. The biological basis for surface-dependent regulation of osteogenesis and implant osseointegration[J]. J Am Acad Orthop Surg, 2022, 30(13): e894-e898.
|
6 |
Liao B, Xu C, Wang Z, et al. Preparation of chitosan-tannic acid coating and its anti-osteoclast and antibacterial activities in titanium implants[J]. J Bone Miner Metab, 2022, 40(3): 402-414.
|
7 |
Su J, Du Z, Xiao L, et al. Graphene oxide coated titanium surfaces with osteoimmunomodulatory role to enhance osteogenesis[J]. Mater Sci Eng C Mater Biol Appl, 2020, 113: 110983.
|
8 |
Dou C, Ding N, Luo F, et al. Graphene-based microRNA transfection blocks preosteoclast fusion to increase bone formation and vascularization[J]. Adv Sci (Weinh), 2017, 5(2): 1700578.
|
9 |
Brånemark R, Brånemark PI, Rydevik B, et al. Osseointegration in skeletal reconstruction and rehabilitation: a review[J]. J Rehabil Res Dev, 2001, 38(2): 175-181.
|
10 |
Young PS, Tsimbouri PM, Gadegaard N, et al. Osteoclastogenesis/osteoblastogenesis using human bone marrow-derived cocultures on nanotopographical polymer surfaces[J]. Nanomedicine (Lond), 2015, 10(6): 949-957.
|
11 |
Feng X, Teitelbaum SL. Osteoclasts: new insights[J]. Bone Res, 2013, 1(1): 11-26.
|
12 |
Portes M, Mangeat T, Escallier N, et al. Nanoscale architecture and coordination of actin cores within the sealing zone of human osteoclasts[J]. Elife, 2022, 11: e75610.
|
13 |
Amarasekara DS, Yun H, Kim S, et al. Regulation of osteoclast differentiation by cytokine networks[J]. Immune Netw, 2018, 18(1): e8.
|
14 |
Zhang Y, Chen SE, Shao J, et al. Combinatorial surface roughness effects on osteoclastogenesis and osteogenesis[J]. ACS Appl Mater Interfaces, 2018, 10(43): 36652-36663.
|
15 |
Zhou Y, Tang C, Deng J, et al. Micro/nano topography of selective laser melting titanium inhibits osteoclastogenesis via mediation of macrophage polarization[J]. Biochem Biophys Res Commun, 2021, 581: 53-59.
|
16 |
Yu X, Xu R, Zhang Z, et al. Different cell and tissue behavior of micro-/nano-tubes and micro-/nano-nets topographies on selective laser melting titanium to enhance osseointegration[J]. Int J Nanomedicine, 2021, 16: 3329-3342.
|
17 |
Makihira S, Mine Y, Kosaka E, et al. Titanium surface roughness accelerates RANKL-dependent differentiation in the osteoclast precursor cell line, RAW264.7[J]. Dent Mater J, 2007, 26(5): 739-745.
|
18 |
Davison NL, Su J, Yuan H, et al. Influence of surface microstructure and chemistry on osteoinduction and osteoclastogenesis by biphasic calcium phosphate discs[J]. Eur Cell Mater, 2015, 29: 314-329.
|
19 |
Shin SY, Han DH. Influence of a microgrooved collar design on soft and hard tissue healing of immediate implantation in fresh extraction sites in dogs[J]. Clin Oral Implants Res, 2010, 21(8): 804-814.
|
20 |
Geblinger D, Zink C, Spencer ND, et al. Effects of surface microtopography on the assembly of the osteoclast resorption apparatus[J]. J R Soc Interface, 2012, 9(72): 1599-1608.
|
21 |
Nagayama K, Hanzawa T. Cell type-specific orientation and migration responses for a microgrooved surface wi-th shallow grooves[J]. Biomed Mater Eng, 2022, 33(5): 393-406.
|
22 |
Hu P, Gao Q, Zheng H, et al. The role and activation mechanism of TAZ in hierarchical microgroove/nanopo-re topography-mediated regulation of stem cell differentiation[J]. Int J Nanomedicine, 2021, 16: 1021-1036.
|
23 |
Zhang X, Aoyama T, Yasuda T, et al. Effect of microfabricated microgroove-surface devices on the morphology of mesenchymal stem cells[J]. Biomed Microdevices, 2015, 17(6): 116.
|
24 |
Șelaru A, Herman H, Vlăsceanu GM, et al. Graphene-oxide porous biopolymer hybrids enhance in vitro osteogenic differentiation and promote ectopic osteogenesis in vivo [J]. Int J Mol Sci, 2022, 23(1): 491.
|
25 |
Liu M, Hao L, Huang Q, et al. Tea polyphenol-reduced graphene oxide deposition on titanium surface enhances osteoblast bioactivity[J]. J Nanosci Nanotechnol, 2018, 18(5): 3134-3140.
|
26 |
Fu C, Yang X, Tan S, et al. Enhancing cell proliferation and osteogenic differentiation of MC3T3-E1 pre-osteoblasts by BMP-2 delivery in graphene oxide-incorporated PLGA/HA biodegradable microcarriers[J]. Sci Rep, 2020, 10(1): 6249.
|
27 |
Sun J, Li L, Xing F, et al. Graphene oxide-modified silk fibroin/nanohydroxyapatite scaffold loaded with urine-derived stem cells for immunomodulation and bone regeneration[J]. Stem Cell Res Ther, 2021, 12(1): 591.
|
28 |
Han J, Kim YS, Lim MY, et al. Dual roles of graphene oxide to attenuate inflammation and elicit timely polarization of macrophage phenotypes for cardiac repair[J]. ACS Nano, 2018, 12(2): 1959-1977.
|
29 |
Hung HS, Kung ML, Chen FC, et al. Nanogold-carried graphene oxide: anti-inflammation and increased differentiation capacity of mesenchymal stem cells[J]. Nanomaterials (Basel), 2021, 11(8): 2046.
|
30 |
Zeng Y, Zhou M, Chen L, et al. Alendronate loaded graphene oxide functionalized collagen sponge for the dual effects of osteogenesis and anti-osteoclastogenesis in osteoporotic rats[J]. Bioact Mater, 2020, 5(4): 859-870.
|
31 |
Xue D, Chen E, Zhong H, et al. Immunomodulatory pro-perties of graphene oxide for osteogenesis and angioge-nesis[J]. Int J Nanomedicine, 2018, 13: 5799-5810.
|
32 |
Tylek T, Blum C, Hrynevich A, et al. Precisely defined fiber scaffolds with 40 μm porosity induce elongation driven M2-like polarization of human macrophages[J]. Biofabrication, 2020, 12(2): 025007.
|