1 |
Zeng Y, Fadaak A, Alomeir N, et al. Lactobacillus plantarum disrupts S. mutans-C. albicans cross-kingdom biofilms[J]. Front Cell Infect Microbiol, 2022, 12: 872012.
|
2 |
Global Burden of Disease 2019 Cancer Collaboration, Kocarnik JM, Compton K,et al. Cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life years for 29 cancer groups from 2010 to 2019: a systematic analysis for the global burden of disease study 2019[J]. JAMA Oncol, 2022, 8(3): 420-444.
|
3 |
Kim BS, Han DH, Lee H, et al. Association of salivary microbiota with dental caries incidence with dentine involvement after 4 Years[J]. J Microbiol Biotechnol, 2018, 28(3): 454-464.
|
4 |
Wang Y, Wang S, Wu C, et al. Oral microbiome alterations associated with early childhood caries highlight the importance of carbohydrate metabolic activities[J]. m-Systems, 2019, 4(6): e00450-e00419.
|
5 |
Wu TT, Xiao J, Manning S, et al. Multimodal data integration reveals mode of delivery and snack consumption outrank salivary microbiome in association with caries outcome in Thai children[J]. Front Cell Infect Microbiol, 2022, 12: 881899.
|
6 |
Xu H, Tian BJ, Shi WH, et al. Maturation of the oral microbiota during primary teeth eruption: a longitudinal, preliminary study[J]. J Oral Microbiol, 2022, 14(1): 2051352.
|
7 |
Maruyama N, Maruyama F, Takeuchi Y, et al. Intraindividual variation in core microbiota in peri-implantitis and periodontitis[J]. Sci Rep, 2014, 4: 6602.
|
8 |
Hsiao WW, Li KL, Liu Z, et al. Microbial transformation from normal oral microbiota to acute endodontic infections[J]. BMC Genomics, 2012, 13: 345.
|
9 |
Jing G, Liu L, Wang Z, et al. Microbiome search engine 2: a platform for taxonomic and functional search of global microbiomes on the whole-microbiome level[J]. mSystems, 2021, 6(1): e00943-e00920.
|
10 |
Su X, Jing G, McDonald D, et al. Identifying and predicting novelty in microbiome studies[J]. mBio, 2018, 9(6): e02099-e02018.
|
11 |
Su X. Elucidating the beta-diversity of the microbiome: from global alignment to local alignment[J]. mSystems, 2021, 6(4): e0036321.
|
12 |
Goldberg DH, Victor JD, Gardner EP, et al. Spike train analysis toolkit: enabling wider application of information-theoretic techniques to neurophysiology[J]. Neuroinformatics, 2009, 7(3): 165-178.
|
13 |
Rognes T, Flouri T, Nichols B, et al. VSEARCH: a versatile open source tool for metagenomics[J]. PeerJ, 2016, 4: e2584.
|
14 |
Markowitz VM, Chen IMA, Palaniappan K, et al. IMG: the integrated microbial genomes database and comparative analysis system[J]. Nucleic Acids Res, 2011, 40(D1): D115-D122.
|
15 |
Jing GC, Sun Z, Wang HL, et al. Parallel-META 3: comprehensive taxonomical and functional analysis platform for efficient comparison of microbial communities[J]. Sci Rep, 2017, 7: 40371.
|
16 |
Su XQ, Xu J, Ning K. Meta-Storms: efficient search for similar microbial communities based on a novel indexing scheme and similarity score for metagenomic data[J]. Bioinformatics, 2012, 28(19): 2493-2501.
|
17 |
Joharji RM, Adenubi JO. Prevention of pit and fissure caries using an antimicrobial varnish: 9 month clinical evaluation[J]. J Dent, 2001, 29(4): 247-254.
|
18 |
Kazemtabrizi A, Haddadi A, Shavandi M, et al. Metagenomic investigation of bacteria associated with dental lesions: a cross-sectional study[J]. Med Oral Patol Oral Cir Bucal, 2020, 25(2): e240-e251.
|
19 |
Zhang L, Sun T, Zhu P, et al. Quantitative analysis of salivary oral bacteria associated with severe early childhood caries and construction of caries assessment model[J]. Sci Rep, 2020, 10(1): 6365.
|
20 |
Hurley E, Barrett MPJ, Kinirons M, et al. Comparison of the salivary and dentinal microbiome of children with severe-early childhood caries to the salivary microbiome of caries-free children[J]. BMC Oral Health, 2019, 19(1): 13.
|
21 |
Yang F, Zeng X, Ning K, et al. Saliva microbiomes distinguish caries-active from healthy human populations[J]. ISME J, 2012, 6(1): 1-10.
|
22 |
郝思远, 王甲河, 张晓奇, 等. 双歧杆菌预防龋病有效性和安全性的系统评价与Meta分析[J]. 口腔疾病防治, 2021, 29(4): 241-248.
|
|
Hao SY, Wang JH, Zhang XQ, et al. Efficacy and safety of Bifidobacteria in preventing caries: a systematic review and meta-analysis[J]. J Prev Treat Stomatol Dis, 2021, 29(4): 241-248.
|
23 |
Human Microbiome Project Consortium. A framework for human microbiome research[J]. Nature, 2012, 486(7402): 215-221.
|
24 |
徐欣, 周学东. 龋病病因学研究与临床诊疗新进展[J]. 中华口腔医学杂志, 2021, 56(1): 3-9.
|
|
Xu X, Zhou XD. Current progress in etiology and cli-nical management of dental caries[J]. Chin J Stomatol, 2021, 56(1): 3-9.
|
25 |
Pitts NB, Ekstrand KR, Foundation I. International Caries Detection and Assessment System (ICDAS) and its International Caries Classification and Management System (ICCMS)-methods for staging of the caries process and enabling dentists to manage caries[J]. Community Dent Oral Epidemiol, 2013, 41(1): e41-e52.
|
26 |
Simonsen RJ. From prevention to therapy: minimal intervention with sealants and resin restorative materials[J]. J Dent, 2011, 39(): S27-S33.
|
27 |
Sürme K, Kara NB, Yilmaz Y. In vitro evaluation of occlusal caries detection methods in primary and permanent teeth: a comparison of CarieScan PRO, DIAGNOdent pen, and DIAGNOcam methods[J]. Photobiomodul Photomed Laser Surg, 2020, 38(2): 105-111.
|
28 |
Bader JD, Shugars DA. A systematic review of the performance of a laser fluorescence device for detecting caries[J]. J Am Dent Assoc, 2004, 135(10): 1413-1426.
|
29 |
Teng F, Yang F, Huang S, et al. Prediction of early childhood caries via spatial-temporal variations of oral microbiota[J]. Cell Host Microbe, 2015, 18(3): 296-306.
|
30 |
Huang S, Li R, Zeng X, et al. Predictive modeling of gingivitis severity and susceptibility via oral microbiota[J]. ISME J, 2014, 8(9): 1768-1780.
|
31 |
Huang S, Li Z, He T, et al. Microbiota-based signature of gingivitis treatments: a randomized study[J]. Sci Rep, 2016, 6: 24705.
|
32 |
Duvallet C, Gibbons SM, Gurry T, et al. Meta-analysis of gut microbiome studies identifies disease-specific and shared responses[J]. Nat Commun, 2017, 8(1): 1784.
|
33 |
D’Amore R, Ijaz UZ, Schirmer M, et al. A comprehensive benchmarking study of protocols and sequencing platforms for 16S rRNA community profiling[J]. BMC Genomics, 2016, 17: 55.
|
34 |
张玉凤, 荆功超, 李劲华, 等. 基于微生物组大数据搜索的疾病检测[J]. 科学, 2021, 73(2): 24-26.
|
|
Zhang YF, Jing GC, Li JH, et al. Disease detection based on microbiome big-data searching[J]. Science, 2021, 73(2): 24-26.
|
35 |
Su X, Jing G, Sun Z, et al. Multiple-disease detection and classification across cohorts via microbiome search[J]. mSystems, 2020, 5(2): e00150-e00120.
|
36 |
Bolyen E, Rideout JR, Dillon MR, et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2[J]. Nat Biotechnol, 2019, 37(8): 852-857.
|
37 |
Ding T, Schloss PD. Dynamics and associations of microbial community types across the human body[J]. Nature, 2014, 509(7500): 357-360.
|
38 |
Simón-Soro A, Belda-Ferre P, Cabrera-Rubio R, et al. A tissue-dependent hypothesis of dental caries[J]. Caries Res, 2013, 47(6): 591-600.
|
39 |
Xu H, Tian J, Hao W, et al. Oral microbiome shifts from caries-free to caries-affected status in 3-year-old Chinese children: a longitudinal study[J]. Front Microbiol, 2018, 9: 2009.
|