1 |
Demant S, Dabelsteen S, Bjørndal L. A macroscopic and histological analysis of radiographically well-defined deep and extremely deep carious lesions: carious lesion characteristics as indicators of the level of bacterial penetration and pulp response[J]. Int Endod J, 2021, 54(3): 319-330.
|
2 |
Zhou DX. Deep distributed convolutional neural networks: universality[J]. Anal Appl, 2018, 16(6): 895-919.
|
3 |
Min JK, Kwak MS, Cha JM. Overview of deep learning in gastrointestinal endoscopy[J]. Gut Liver, 2019, 13(4): 388-393.
|
4 |
Esteva A, Kuprel B, Novoa RA, et al. Dermatologist-level classification of skin cancer with deep neural networks[J]. Nature, 2017, 542(7639): 115-118.
|
5 |
Wang S, Zha Y, Li W, et al. A fully automatic deep learning system for COVID-19 diagnostic and prognostic analysis[J]. Eur Respir J, 2020, 56(2): 2000775.
|
6 |
Duncan HF, Galler KM, Tomson PL, et al. European Society of Endodontology position statement: management of deep caries and the exposed pulp[J]. Int Endod J, 2019, 52(7): 923-934.
|
7 |
Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition[EB/OL]. , 2014-09-04.
|
8 |
He K, Zhang X, Ren S, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE confe-rence on computer vision and pattern recognition. 2016: 770-778.
|
9 |
Huang G, Liu Z, Van Der Maaten L, et al. Densely connected convolutional networks[C]//Proceedings of the I-EEE conference on computer vision and pattern recognition. 2017: 4700-4708.
|
10 |
Bui TH, Hamamoto K, Paing MP. Deep fusion feature extraction for caries detection on dental panoramic radiographs[J]. Appl Sci, 2021, 11(5): 2005.
|
11 |
Zhang X, Liang Y, Li W, et al. Development and evaluation of deep learning for screening dental caries from oral photographs[J]. Oral Dis, 2022, 28(1): 173-181.
|
12 |
Moran M, Faria M, Giraldi G, et al. Classification of approximal caries in bitewing radiographs using convolutional neural networks[J]. Sensors (Basel), 2021, 21(15): 5192.
|
13 |
Shahinfar S, Meek P, Falzon G. “How many images do I need?” Understanding how sample size per class affects deep learning model performance metrics for balanced designs in autonomous wildlife monitoring[J]. Ecolog Inform, 2020, 57: 101085.
|
14 |
Wolters WJ, Duncan HF, Tomson PL, et al. Minimally invasive endodontics: a new diagnostic system for assessing pulpitis and subsequent treatment needs[J]. Int Endod J, 2017, 50(9): 825-829.
|
15 |
Bjørndal L, Demant S, Dabelsteen S. Depth and activity of carious lesions as indicators for the regenerative potential of dental pulp after intervention[J]. J Endod, 2014, 40(4 ): S76-S81.
|
16 |
Lian L, Zhu T, Zhu F, et al. Deep learning for caries detection and classification[J]. Diagnostics (Basel), 2021, 11(9): 1672.
|
17 |
Zheng L, Wang H, Mei L, et al. Artificial intelligence in digital cariology: a new tool for the diagnosis of deep caries and pulpitis using convolutional neural networks[J]. Ann Transl Med, 2021, 9(9): 763.
|